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Abstract— We propose a protein communication system
where the transmitted messages are protein sequences and the
encoded message is the DNA. A series connection of the protein
communication channel is equivalent to a channel through time:
the channel of evolution. We study the evolutionary dynamics
of this channel in both cases of constant and time-varying
point mutation rate. We establish, using matrix analysis, that
stochastic messages sent through the channel of evolution are
received according to a fixed probability distribution, which is
independent of the original message.

I. INTRODUCTION

An essential ingredient to any life form is the existence
of an information storage and processing system within it.
Furthermore, life can be understood and described as a
communication process through time. Thus, the development
of a mathematical model to capture the genetic information
storage and transmission apparatus, during cell division, is
important for many research areas such as intron research,
aging theories and evolutionary studies.

The standard in the mathematical biology community
today is to model the biological information transfer as a
communication system, where the input is the DNA sequence
and the output is the amino acid chain in the protein [1], [2],
[3]. Even though the DNA-Protein system faithfully repro-
duces the biological flow of information, it fails to explain
the different elements in a proper biological communication
system. Specifically:
- The DNA-Protein system is inconsistent with engineer-
ing communication systems, which model transmission and
storage of the same messages at the source and destination
(excluding errors due to channel degradation). It is, therefore,
incorrect to view the translation between DNA sequences
and proteins as a communication system. The DNA-protein
system is a transformation between the 4-letter alphabet
message in the DNA and the 20-letter alphabet message in
the amino acid polypeptide. The genetic code dictates this
transformation. Thus, from a communication point of view,
the DNA-Protein system corresponds to the decoding system;
- The DNA-protein system views the DNA as the message
source and hence completely neglects the true nature of the
DNA sequence as the encoded information, which is well
established in molecular biology, even though there is no
encoding process in biology;
- In the DNA-Protein system, the source DNA generates the
genome according to a specific stochastic process, which
uses a 4-letter alphabet. Hence, the DNA-Protein system
cannot explain the current structure of DNA, e.g. presence
of non-coding DNA and the size of the genetic alphabet.

The closest notion, found in the literature, to a mathemati-
cal abstraction of a protein communication channel has been
presented by May et al. [4] who introduce a communication
model with a virtual genetic encoder, where the DNA is
the encoded information and the proteins are the decoded
information; yet they somehow fail to model the information
source as a source of amino acid alphabets. In this paper, we
model the transmission of information, during cell replication
or asexual reproduction,as a protein communication system
with a single source generating the protein set of the parent.
It is important to emphasize however that, in this view,
we are not supporting the theory of a biological protein-
protein genetic code. The proposed protein communication
system is a mathematical model of information transmission
during cell division. This model does not support either the
theories of proteins-first or nucleotides-first at the origin
of life. It is merely an abstraction, which models a cell
as a set of proteins and the process of cell division as an
information communication system between protein sets. In
fact, the proposed biological communication model could
be used to explain the transmission of information in both
the proteins-first and nucleotides-first theories. The encoding
process, in the proposed protein communication channel,
does not happen in biology since proteins cannot be used to
generate DNA. It is only a mathematical model of the protein
information captured by DNA. To clarify this idea, assume
that we have a computer that maintains an MPEG code while
decoding to display a video. Copies of the video to other
computers only require sending the MPEG code. Assume
further that the first MPEG code was created by chance. This
system never encodes a video into MPEG. It only decodes
MPEG to display a video. The proper communication model
is, however, “video → MPEG → MPEG → video” even
though the process “video → MPEG” never takes place.
Biological organisms have resolved the real communication
problem, i.e. “protein → protein”, by ensuring that organisms
maintain both proteins and DNA. Therefore, the “protein
→ DNA” encoder is not required biologically. Biological
systems only decode DNA into proteins via the transcription
and translation processes. Furthermore, based on the highly
redundant structure of the DNA sequence, i.e., presence of a
large percentage of non-coding segments, we argue that the
encoder models a source and channel encoder [5].

Analysis of a protein communication system, which mod-
els the transmission of information in sexual reproduction, is
much more involved mathematically than the single source
communication system in cell replication. In particular, it
requires the use of multi-user information theory and dis-



tributed coding and will not be discussed in this paper.
The protein communication system is shown in Fig. 1(a).

This system structure suggests a strong isomorphism with
engineering communication systems. However, there are two
main differences between the genetic information processing
system and the communication engineer’s system: The first
is that biology does not encode proteins into DNA. It only
decodes genes into proteins. The second is that, unlike the
communication engineer’s system, the biological commu-
nication system is not designed to minimize transmission
errors. In the absence of errors, evolution will not be possible.
Fig. 1(b) summarizes the analogy between an engineering
communication system for video transmission and the protein
communication system.

The protein communication channel is time-dependent:
thermal noise, radioactivity and cosmic rays are sources of
errors and they occur with a probability that is a function of
time regardless of the number of replications of the DNA.
A series connection of the protein communication channel
is equivalent to a channel through time: “the channel of
evolution”. In this paper, we will investigate the behavior
of this channel. Specifically, we will address the following
questions: (1) Given an infinitely small probability of error
at each generation of cell replication, how are the cell
offsprings related to their ancestral mother cell after a large
number of generations? (2) Given an initial distribution of
amino acids, how does this distribution evolve with time? Is
there an equilibrium distribution? If yes, what is the rate of
convergence to this equilibrium distribution and what are the
biological implications of such equilibrium?

II. PROTEIN COMMUNICATION CHANNEL

The protein communication channel is uniquely character-
ized by its probability transition matrix. The (i, j) entry of
this matrix, Pr (Pj |Pi), is the probability of receiving protein
Pj = (aj

1, · · · , a
j
N ) given that protein Pi = (ai

1, · · · , ai
N )

was transmitted. We assume that the protein channel is
memoryless. Hence, we have

Pr (Pj |Pi) =

N
∏

k=1

Pr (aj
k|a

i
k), (1)

From the above equation, we see that it is sufficient to study
the probability transition matrix, Q(k) = {qi,j(k)}1≤i,j≤20,
at time k, of the amino acids.

In this paper, we use two different probability transition
matrices: PAM250 probability transition matrix [6] 1 and
a first-order Markov transition probability matrix, P. P is
constructed from the genetic code as follows: Let α(k) be
the probability of a base interchange of any one nucleotide at
time k, all interchanges being equally probable. Assuming
that the 64 codons are equally probable and from Baye’s

1The PAM250 probability transition matrix is the PAM mutation prob-
ability matrix for the evolutionary distance of 250 PAMs and should not
be confused with the PAM Log odds matrix corresponding to the same
evolutionary distance. The PAM250 transition probability matrix is shown
in [6, Fig. 83]

rule, we obtain the following formula for the probability of
a transition from amino acid a to amino acid â,

Pr(â|a) = Pr({c1, · · · , cn}|{b1, · · · , bm})

=
1

m

n
∑

i=1

n
∑

j=1

α(k)h(bj ,ci)(1 − 3α(k))3−h(bj ,ci),

where {c1, · · · , cn}, (resp. {b1, · · · , bm}), are the codons of
the received, (resp. transmitted), amino acid and h(bj , ci) is
the hamming distance between codon bj and codon ci. For
computational efficiency and since burst mutations are less
likely to happen than 1 point mutations, we retain only the
terms of the first degree in α(k). The probability transition
matrix P is displayed in Fig. 2. The amino acids are alpha-
betically ordered by their one-letter standard abbreviations,
e.g., p1,1 = Pr(A|A).

Let p0 be the row probability vector of the initial distri-
bution of the amino acids (at time 0). It is straightforward
to show that the row probability vector of the amino acids
at time k is given by

pk = p0Q(1)Q(2) · · ·Q(k), (2)

where Q ∈ {PAM250,P}. Observe that P takes into account
all possible mutations between amino acids whether they are
accepted or rejected by natural selection whereas the PAM
transition matrix is estimated from phylogenetic trees of
protein sequences and hence takes into account the accepted
mutations only.

III. CONSTANT POINT MUTATION RATE

In this section, we assume that the point mutation rate is
constant over time, i.e., α(k) = α, for all k ≥ 0. Hence, Eq.
(2) becomes

pk = p0Q
k. (3)

Proposition 1: Consider an initial probability distribution
of the amino acids at time 0, p0 (some amino acids might
have an initial zero probability of occurrence). Then, the
probability distribution of the amino acids converges, over
time, towards a stationary distribution given by s1 if Q = P

and s2 if Q = PAM250, where
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s2 =
(0.087, 0.041, 0.042, 0.048, 0.034, 0.039, 0.051, 0.091, 0.033,
0.036, 0.083, 0.08, 0.014, 0.038, 0.053, 0.07, 0.06, 0.0089,
0.028, 0.064).

Proof: The probability transition matrices P and
PAM250 are irreducible and aperiodic. Therefore, from the
Perron-Frobenius theorem [7], there exists a unique sta-
tionary probability row vector s1 (resp. s2) such that the
sequence of powers {p0P

k}k∈N (resp. {p0 PAMk
250}k∈N)

approaches the fixed probability vector s1 (resp. s2) as
k → ∞. Moreover, s1 and s2 are independent of the initial
distribution p0. The stationary probability vector s1 (resp.
s2) is the unique solution of the linear system s1P = s1
(resp. s2 PAM250 = s2), subject to s11 = 1 (resp. s21 = 1),
where 1 is the column vector with all its entries equal to 1.



(a) (b)

Fig. 1. (a) Protein communication system; (b) Comparison between the engineering communication system and the protein communication system.

Fig. 2. P: a first-order Markov probability transition matrix between amino acids. Only the terms of the first degree in α(k) are retained.

Observe that s1 is proportional to the number of codon
assignment in proteins. Jukes et al. [8] studied 68 repre-
sentative proteins from eukaryotic, prokaryotic and viruses.
They computed the following distribution vector, r for the
20 amino acids,
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(4)
Since PAM250 estimates the rate of accepted mutations only,
s2 is closer, on average, to r than s1. The discrepancy
between s1 and s2 can be related to the relative probability
of survival of the amino acids after mutations. In both cases,
the limiting distribution of the amino acids are not uniform.
Hence, some amino acids will be more abundant than others
and consequently, evolution will have a higher probability of
generating certain organisms. We shall divide the amino acids
into classes C1, C2, C3, C4 and C6 , the subscripts indicating
the number of codons for each class. The mean experimental
and limiting distributions, for each class, are very close
except for the class of amino acids corresponding to 6 codons
obtained from the limiting distribution using the probability
transition matrix P. The reason is that Arginine, which is
coded by 6 codons, appears with a much lower frequency
than 6

61 . This has been ascribed to the rare appearance of the
CG base doublet so that, in fact, in most observed proteins,
arginine is coded only by AGA and AGG [2].

A question naturally arises now: what is the rate of
convergence? And how is this rate related to the rate of
point mutation α ? The answer is provided in the following

proposition:
Proposition 2: {p0Q

k}k≥1 converges at a
geometric rate with parameter |λ2|, where
{

|λ2| = 0.53, if Q = PAM250;
|λ2| ≤ 1 − 1

2α, if Q = P.
Thus, the convergence rate for P is no slower than O((1 −
1
2α)k). Moreover, when α decreases, the convergence is
slower and vice versa. This result is somehow intuitive and,
as a consequence, proves that no evolution is possible if
α = 0.

Proof: The matrix Q ∈ {P, PAM250} is an irreducible,
aperiodic and stochastic matrix. Therefore, the eigenvalues
of Q can be ordered by 1 > |λ2| ≥ · · · ≥ |λt| . As
k → ∞, Qk = Q∞ +O(km2−1|λ2|

k), elementwise, where
m2 is the algebraic multiplicity of λ2 and Q∞ is the matrix
whose rows are equal to the limiting distribution [9, Theorem
1.2]. Thus the convergence is geometric with rate |λ2|. For
PAM250, we numerically compute |λ2| = 0.53. However,
Finding the eigenvalues of P, other than 1, amounts to
analytically finding the roots of a polynomial of degree 19.
Since there is no algebraic way to find the roots of such
a polynomial, the following inequality, due to Deutsch &
Zenger, gives an upper bound for λ2 [10]:

|λ2| ≤
1

2
max

i,j
{pi,i+pj,j−pi,j−pj,i+

∑

k
k 6=i,j

|pi,k−pj,k|}. (5)

Applying Eq. (5) to the probability transition matrix P, in
Fig 2, leads to |λ2| ≤ 1 − 1

2α.



IV. TIME-VARYING POINT MUTATION RATE

In this section, we consider a rate of point mutation,
α(k), which varies in time. Consider the products Tp,k =

{t
(p,k)
i,j } = Qp+1Qp+2 · · ·Qp+k for every p ≥ 0. For a fixed

p, let t be the smallest integer satisfying Tp,t > 0, in the
sense that all its entries are strictly positive.

Definition 1 (Weak and Strong Ergodicity): [9] The for-
ward products Tp,k are said to be weakly ergodic if t

p,k
i,s −

t
p,k
j,s

k→∞
−−−−→ 0 for each i, j, s, p. If weak ergodicity is obtained

and the t
p,k
i,s themselves tend to a limit for all i, s, p, i.e.,

t
(p,k)
i,j

k→∞
−−−−→ v

(p)
j , then we say strong ergodicity is obtained.

Moreover, if strong ergodicity obtains, then the limit row
vector vp = {v

(p)
j } is a probability vector and is independent

of p ≥ 0, i.e., vp = v [9]. Hence, strong ergodicity is
equivalent to the existence of the limit of Tp,k as k → ∞,
for all p ≥ 0.

Definition 2: [9] A matrix Q = {qi,j} is called a scram-
bling matrix if given any two rows β and δ, there is at least
one column ρ such that qβ,ρ > 0 and qδ,ρ > 0.
It is easy to show, that since every transition matrix at time
k, Q(k), is scrambling, then so is Tp,k, p ≥ 0.

Theorem 1: Consider a finite number of PAM matrices
denoted by PAM(1),· · · , PAM(N ), where PAM(i) can be
PAM1 or PAM160 or PAM250, etc, for all i = 1, · · · , N .
Consider the sequence: Tp,k = tp+1tp+2 · · · tp+k, where
each ti ∈ {PAM(1), · · ·PAM(N)}. That is at each time k,
the probability transition matrix is some PAM matrix (the
evolutionary time of the PAM matrix and the time k are not
necessarily equal). Then, Tp,k is weakly ergodic at a uniform
geometric rate for all p ≥ 0. So the sequence {pk}k≥1, in
Eq. (2), tends to a sequence of distributions independently
of p0.

Proof: Denote by min+ I the minimum of the strictly
positive elements of the set I . Theorem 1 follows from [9,
Theorem 4.10], which states that if the sequence Tp,k is
scrambling, for all k ≥ 1, and min+

i,j q(k)i,j ≥ γ > 0
uniformly for all k ≥ 1, then weak ergodicity obtains at
a uniform geometric rate for all p ≥ 1. Let

γ = min
1≤k≤N

{
+

min
i,j

PAM(k)i,j

}

.

Then we have min
+

i,j PAM(k)i,j ≥ γ > 0 uniformly for
all k ≥ 1. Observe that the main assumption in Theorem
1 is the finite number of PAM matrices. From the proof of
[9, Theorem 4.10], it follows that the convergence rate is
geometric with parameter (1 − γt)

1
t .

If we approximate the matrices PAMk by PAMk
1 , the

sequence Tp,k = PAMp+1PAMp+2 · · · PAMp+k becomes
strongly ergodic. In particular, the sequence {pk}k≥1, in Eq.
(2), converges to the limiting distribution s2.

Theorem 2: Consider a point mutation rate, α(k), which is
bounded uniformly on k, i.e., 0 < a ≤ α(k) ≤ b < 1. Then
the products Tp,k = Pp+1 · · ·Pp+k are strongly ergodic.
Thus, the sequence {pk}k≥1, in Eq. (2), converges towards
the stationary distribution s1 independently of the initial
distribution p0. Moreover, the convergence rate is at least

geometric with parameter (1− γt)
1
t , where γ = min{a

6 , 1−
9b}.

Proof: From the probability transition matrix P(k),
depicted in Fig. 2, we have min+

i,j pi,j(k) = min{1 −

9α(k), 1
6α(k)}. From the boundedness of the mutation rate

α(k), we obtain min+
i,j pi,j(k) ≥ min{a

6 , 1 − 9b} = γ,
uniformly on k. Let ek be the unique stationary distribution
of P(k). We have, ek = s1 for all k ≥ 1. In particular, the
sequence of vectors {ek}k≥1 converges to s1. Since Tp,k

have no zero column, the strong ergodicity property follows
from [9, Theorem 4.15]. The rate of convergence follows
from [9, Theorem 4.10].
The time-varying point mutation rate analysis implies, in
particular, that the original transmitted message is somehow
lost through the channel of evolution; this is an information
theoretic proof of the darwinian theory since the human
protein set, for instance, is the received message of a prim-
itive bacteria protein set transmitted through the channel of
evolution at the beginning of life.

V. CONCLUSION

We can obtain similar results with the BLOSUM [11]
probability transition matrix constructed from the log-odds
BLOSUM matrix. The convergence of the probability tran-
sition matrix shows that a parent organism will be unrelated
to its offsprings after infinitely many generations no matter
how small the initial point mutation rate is as long as it
is non-zero. The rate of convergence quantifies the speed
of this divergence. The limiting distribution s1 shows that,
if all mutations were accepted, the asymptotic abundance
of amino acids in nature would be proportional to their
codon assignment. The discrepancy between this limiting
distribution and the natural abundance can be related to the
relative survival of the amino acids after they mutate.
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